[image: image1.png]IBA jgaiord iniute
of Business Analysis’



[image: image1.png][image: image2.jpg]


[image: image3.jpg]International Institute of Business Analysis www.lIBA.org






IIBA Business Analytics Series: From Idea to Production – Continuous Development Starts With An Idea, Not After Testing is Finished!
Huw Price, Managing Director, Grid-Tools

Mimi:
Good afternoon and happy Thursday. Welcome to today’s presentation. 

Membership has its benefits. Feel free to contact IIBA for membership information. IIBA is an international, not-for-profit professional association for business analysts. Our mission is to develop and maintain status for the practice of business analysis and for the certification of its practitioners.
 
Today’s webinar will draw on a new approach which is helping a global financial services company drive down real costs in software development by almost 30%. It will illustrate how it is possible to build extremely accurate requirements and test cases that can be understood by the user, programmers and testers.


The webinar will explain how you use mathematical techniques to break processes down into clear, smaller, logical, unambiguous requirements that can help drive higher quality and faster development. The presentation will show how Agile Designer can be used to calculate accurate development metrics and build matching test data.


We welcome today Huw Price who is Managing Director of Grid-Tools. Huw Price is award-winning and has lead technical architecture for several US and European software companies over the last 30 years. He is now Managing Director of Grid-Tools, the leading test management vendor and Chief Technical Architect at Agile Designer. Huw has been guest speaker at many UK and international conferences including Oracle, HP, Surrey and IIBA’s UK chapter.


Thank you for coming today, Huw.

Mimi:
Just as a note to our listeners, if you have questions, we will be collecting questions throughout the presentation. You can enter them through the question box and they will be asked by the end of the presentation. Over to you, Huw.

Huw:
Okay, thanks. 


Okay. If there are any problems with audio, please let me know. I am dialing in on the telephone at the moment but I could come in on a headset if need be. It’s mostly going to be slides, it’s quite a large topic that we are trying to tackle today, but I’ve also got about 10 minutes of actual live demo. For the demo, it might be worth you looking at it later on with the recording as well if you are interested in getting a hold of a copy.


The concept is, “From Idea to Production – Continuous Development Starts With An Idea, Not After Testing is Finished!” Continuous development, continuous integration, continuous engineering, iterative development, dev-ops, I guess is the term that most people associate with this content of continuous development. 


It’s mostly ops. Most of the technology out there that you see is actually kind of to pick stuff up when you’ve almost finished developing the software. And then it helps you move it through to production and maybe around to do regression tests for you. It sort of starts when development and testing our complete whereas in our mind, it should really start when your user, who you are trying to keep happy, has an idea. That is when the clock starts ticking on how quickly you can get that out into production and start making money.


Before we dive in to how you actually get continuous development, you’ve got the landscape that actually exists in the real world. You know, the problems really are that a lot of software defects can actually be traced back to ambiguities in requirements. 


The cost of actually detecting and resolving production is expensive. Industry standards for manual test case design is actually about 10-20%. We’ve got quite a lot of metrics on this. This is when people try and design test cases by hand, and also test cases tend to grow but they never get removed so you end up with an enormous number of test cases and which ones are actually the important ones?


The other thing is that the development cycle nowadays tends to be, it’s actually more about change requests. If you look at the requirements documents, there are more change requests than the original document. That could be emails, etcetera.



The other thing is that if I make a change, I have no idea the effect this will have on upstream or downstream systems. It’s a common complaint and most people are really uncomfortable when they do an interim test. I think that’s one of the core things that we really focus on there, trying to isolate off components within systems and to really understand the impact of change above me and below me.


There are many tools out there to manage requirements. Everyone’s got them, from Word and Sharepoint to Gira to HP Requirements Manager to DAWS to Blueprint. There are loads of them. There are also plenty of tools to manage test cases. Basically, we consider those to be logistical support. We would interface with those tools. We can output out requirements and our test cases into those tools. 


However, Agile Designer is really an accelerator to improve the input to these tools. That’s really where it sits. It’s not going to particularly interfere with your existing infrastructure but it’s going to help you do your job to a higher quality and faster, in a nutshell


Primarily when we first launched it, we have been around the test data space for 10 years and we do a lot of work designing the right test data to test with. We got very heavily into test base optimization, so all of the different coverage techniques in terms of how you actually test something properly. There is a whole world of science and mathematics associated with that.


Its primary focus has actually been in the testing space which is all about test case design and test case optimization. There are various webinars and if you look me up on Google, you will find a whole bunch of stuff on that. It’s also a requirements definitions tool. That is not a requirements management tool. It helps you build requirements which is kind of where the cross-fertilization with business analysts is. I am going to go into that in some detail a bit later.


It can also calculate complexity very accurately. The IT industry is really the only industry in the world where you have no idea how much it is going to cost, when it is going to finish or if it is going to finish. And that is because the science of complexity has kind of dropped off people’s radar. Now what we have done is we have actually built some pretty clever mathematics on that. Again, we’ve also got some webinars on that and some whitepapers to help you understand that.


The other thing is identifying change. One of the problems with requirements is that if you make a change, it is very difficult to identify which test cases, what are the requirements affected and what other systems are affected. That is a very important feature on Agile Designer, that’s an impact analysis.


The great advantage of it and the reason it’s becoming popular is that it gives you multiple outputs for one input. If you design your test cases, you are actually almost reverse-engineering the requirements document. You are getting two outputs, it will also build you the test data and so on. So when you can do one job and have four or five outputs, that is a much more efficient way of spending your day.


So how does it work? We have taken a very simple idea which is the flow chart. It’s been around since I was a programmer back in the dark ages. The first decision chart we are going to use is to kind of draw a flow chart. No, so I’d say leave the IT profession.


When we were doing a demo for the product, someone said, “Well, I don’t think our business analysts would be capable of drawing flow charts,” which was a little worrying. I would hazard to say that that is not a truism for the business analysts that I have met, actually. So I’m not exactly sure what they meant by that.


Can I draw a flow chart? Yes, I can. Do the requirements already exist? Is it in a Word document, is it in DAWS? What we would do then is to just import the text into Agile Designer. We’ve got an importer and we bring that into Agile Designer and what we are going to do is, in effect, create a flow chart out of the textual input.



Quite often there are test cases that already exist and what we will do then is to import those test cases as well. So we have then kind of overlaid the test cases onto the requirements. And then we build a flow chart. So based on that, you can have no requirement originally or no test cases but you are going to go off and build your flow chart.


Out of that, you then could go back to your user and validate the use cases with your user, validate the use cases with the user to make sure that is actually correct which is static test or storyboarding. Then we will generate the perfect set of test cases to test all the functional logic. We will also audit your existing test cases and this is where we come up with this number of 10-20% in terms of the functional logical case.


So that is really the nub of the concept of how you would actually use Agile Designer itself. And out of that, this is, in fact, for this particular flow chart, there five use cases and five test cases. Use cases are test cases are normally used cases but not the other way around in the real world. So what we have done here is turned that into a spreadsheet-type concept with the expected results and the states, the logic gates that we would consider.


Now what have we don’t there? What we’ve done really is that being a bunch of mathematicians (Albert Einstein, being very popular with us), everything should be made as simple as possible but not simpler. What we are really trying to do is to break things down into smaller components but not too small, really.


Inside a block, you may have its own flow chart inside that. But in terms of the process we are looking at now, we have broken it down into small enough pieces which means that you have less text to deal with. 


The other thing, if you just read the quote down at the bottom of there, the way to think of a human brain is as quite a small CPU with a massive graphics card attached to it. People are very good with visualization. If you look at most Agile spring frames, you will actually see a flow chart on the wall. It’s a very common output and it’s also a very good way of collaborating because it is much easier for people to visualize things than to actually read text and then interpret it. Quite often, they will actually scribble them down. It’s very common.


So we have taken the concept of a flow chart and we have sort of activated it. We have made it an active piece, it doesn’t just sit there like Visio.


What can it give you? I said that it had multiple outputs. The first one is to build better requirements. We do that by reducing the language, making it into smaller chunks, forcing out the logic, defining the use cases to make sure that they are valid. I will show you a little bit about some of the stuff we do with language. 


We estimate complexity, which I will also talk a little bit about, creating the perfect set of test cases which is based on the concept of coverage which I’ll explain a little bit, powerful modeling and also being able to do risk-based testing as well. 


There’s improving my existing test cases. Quite often they exist already. There are duplicates and they very often do not cover various combinations. We have, quite often, just imported a whole bunch of test cases, de-duplicated them and put them back out as a single task.


Linking test cases to change, I’ll explain why that is important later. To create and management test data is one of our favorite topics. The last one is to create automations groups. When it comes to continuous development and continuous integration, what you can’t be doing is continually having to change your automation framework. 

If you change your requirements, what we should be able to do is to actually just re-create the Selenium scripts so that your continuous development framework will just carry on from that point forward. In other words, a change in the requirements implies a change to your QTP, your functional tester scripts.


Each component has a value on its own. I would say that most people start by trying to improve their test cases. That is a very common use of Agile Designer. However, when they are used in conjunction each other, then you are kind of working your way down towards continuous development or improving your software development lifecycle.


All of this, of course, is all about earlier delivery at higher quality which of course, every tool promises. It’s the classic shift-left type concept that other people are after.


Let’s take a look at the typical software development life-cycle. Red means hard work. Your hardworking business analyst has gone off, he’s met with the user and he has done a very good job building a set of requirements. They have written them down in some way, shape or form and they have gone back to the user and verified them. 


Then the programmer interprets them and then the tester interprets them. It’s quite hard work for that programmer to interpret all those words that have come out of that requirement and the same with the test cases. That task has to be done again, in fact.


The other thing nowadays, as I mentioned is that change requests come thick and fast. The problem there is that the tester then has to go through all of the existing test cases and the automation test cases and make the changes to them. It might not require a change, you’ve got to look at every test case. At one place it was taking about 200 hours to manually go through all the test cases for each change request to either change, update them or improve them.


The idea with Agile Designer is that you are focusing the hard work at the requirements stage. You are doing as much work as you can earlier on and then everything kind of flows out of that particular hard work.


I am going to talk about testing first a little bit, just to kind of introduce some of the concepts. The way that we think of testing, it is not an abstract, subjective art. It is pure electronics testing. A requirement is a circuit board. There is not a “sometimes.” There is a piece of logic and that is really the core difference in our approach. 


We are trying to apply the theories of electronic testing. If you are sitting in front of a computer, probably 40-minute logic gates. It doesn’t break down, anytime it breaks down is when you put some software on it. These techniques that we are using are based a lot on the original work that was done 30-40 years ago in terms of cause-effect modeling and grounding theory and so on.


Think of a requirement like a circuit board. The test cases will or should reflect the requirements. That is, in effect, static testing. Once you go back and you say, “These are the test cases,” do they look like the circuit board that I am testing? That is a very good static test.


At that stage, you can also measure the coverage. Am I testing this particular logic gate, yes or no? You can also, using some very clever mathematics, create the minimum number of test cases. The number of test cases is astronomical and what you’ve really got to do is use the mathematics to actually create the smallest set of test cases with maximum coverage.


You can reduce and optimize your existing test cases. If I’ve got three test cases running over a particular logic gate, why do I care, let’s pick one of them. Let’s just use one of those. 


That is the concept of using Agile Designer as a testing improvement tool. But one thing to think about is testing coverage. Coverage is a much maligned term. The business thinks that it is code covered. Testers might think it’s the number of tests covered, the number that I’ve run, or the percentage of use cases possibly. I’ve got 33 use cases and I need 23 of them, therefore I am two thirds of the way through.


There are tools out there that are paired combinations that some people say, “Well, I’ve done all paired combinations, therefore we have got 100% coverage.” That is, I’m afraid, not true.


It is actually designing sufficient tests to verify that the design and code correctly implement the requirements. In addition, did you get the right answer for the right reason? Two or more defects may sometimes cancel each other out, which is called observability in mathematical terms. And that is really what we are actually meaning by coverage. When we are talking about coverage in terms of test coverage and use case coverage, that is really what we are talking about.


Let’s take a look at a simple form. This is a very simple form. How many people have looked at a webpage with four or five things in it and suddenly you’ve got an error in it. How is that possible in such a simple form? It should be relatively easy to test but if you actually put that form into Agile Designer, what we’ve got there is that we’ve broken it down into the logic gates from almost a very purist approach. 

What you will find is that there are 2,400 potential paths through that form. That shows that even with maybe five things there, we can get some very high numbers, the key problem being the resets. Once you do a reset, it might not actually flash memory and that is one of the reasons.


With our mathematics, we would actually turn that into 11 test cases and those 11 test cases would, in effect, test each logic gate. That is a very important concept that Agile Designer sits on top of. 


Building Test Case from Requirements, this is just a little bit of a plug for how much quicker it is to build the test cases. There were 326, in effect, use cases. We got it down to 17 but retained 100% coverage. The tester, bless him, had been sitting there, drawing their finger down a piece of text trying to tick them off, cutting and pasting into a spreadsheet. It took him about five hours and when we counted up the coverage, they had about 16%. This is pretty typical, I would say. 


When a change request came through, they then went through the same process pretty much again. All we did was change a couple of logic gates and rebuilt the test cases. So that is how you could use it for this idea of creating better test cases much faster.


Let’s turn our attention to Agile Designer as a requirements definition tool. I monitor the IIBA traffic quite a lot. It’s very active, there is lots and lots of chitchat about all the different types of things that go on there. It’s all good stuff, it’s very useful for us to be able to listen to some of the chatter that is going on.


On the left hand side, are some potential models that can help, and then this is part of the BABOK guide, all the different types of things. So there is a plethora of techniques and methodologies out there to help you build better requirements, to do analysis, business analysis, business systems analysis which is kind of the core of the job.


However, we, having spend a lot of time building test cases, look at the requirements that are out there. Especially when they are built across time zones and across companies, you end up with very poor requirements. There are contradictions, ambiguity of reference, loads of subject matter, expert knowledge, lots of omissions, lots of dangling elses. If you don’t really know what happens when something fails, you just let it fall through.


This would be fairly typical. We based this on the Richard Bender Writing Testable Requirements, which is a fairly standard set of rules to be able to look at requirements documents. And that is pretty common.


Obviously, coming back to our two maxims, “Everything should be made as simple as possible but not simpler” and also using the concepts of the visual cortex, if you take a look at this particular piece of text on the left, one of the problems with requirements is that wall of words, as I would call it. 


Some people write very well. English is superb for poetry. I’m not convinced it’s that good for writing compute requirements. And people have different styles and different vocabularies. So it’s quite tricky to be able to interpret those words. That is often where you get the Venn diagram of the mismatch between the actual story itself and the product that has actually arrived.


The same thing put into a flow chart, on the right hand side your eye is probably already drawn to it. You are looking at it and you can trace your finger through it and say, “Yes, it’s fine. I kind of understand that a little bit better.” Also, the text is smaller, it’s much easier to be able to use that. So people will already use this in terms of Visio or BPMN time hours, etcetera. So using visualization is obviously a very good way to communicate ideas as well as logic.


Business Process Managers, BPMs, there are loads of them around and they are brilliant. They are an excellent place to start. If you take a look at this loan applicant, we just import them, so we have connectors into Visio and to BPMN. We’ve actually taken that and converted that by a simple importer. We tidied it up a little bit and made it prettier and that then looks like a diagram in Agile Designer.


I am just going to switch to a little demo at the moment. So what you’ve got here is the flow chart. Then if you go to our path explorer. What we’ll do then is that once you have imported it, we’ll go to “All Possible Paths.” What you will see there is that we’ve got seven different potential use cases. 


As you flick through what was a very static diagram, it now becomes an active diagram. You’ll see that these are all the potential paths through this particular business process. You will see the descriptions and the expected results as you go through it. So that is the idea of converting a static diagram into an active diagram.


Now what I am going to do is to go into a slightly more robust example. If you take a look at what’s going on here, this is now a little requirement to do with entering trades and customers. You can move it around. If you can use Visio, you can use Agile Designer. We’re just going to have a look inside at some text. 

One of things that we do have is a very powerful glossary tool and one of the things is coming back to this idea of the words that we do have is that we use color coding of words and we use a glossary. If you have a term which is ambiguous, you have to pick one. That is a very important concept. If you have too much black, that generally means that you have to work harder on your glossary. So that is one of the key things. 


Here, we will just carry on looking at our diagram. What you will see is that we are also using the same requirements for multiple purposes. We’ll start with some use cases. The use cases or storyboards are what we would sit with our user, and if we take a look at all possible paths, we see that there are 15 of them. So for this particular requirement, there are 15 different ways through this particular piece of logic.

You will also see down the right hand side that we have got some of that test data, which is all very good. We’ll get to that a bit later. And now what we are going to do is to have a look at the use cases that we’ve created. We have created two use cases already and I may well have verified those with my user to make sure they are correct.


Now I am going to create a new use case. You do this by dragging. This is basically dragging left-to-right. if you’ve got a touch screen, than you can just use a touch screen. You can use it on a pad as well which is quite funky if you are in a meeting with someone. All we are doing is we are tracing the logic through a particular requirement. We are going to sort of drop it on and we are going to go through and store that and I am going to call it, “Use Case 3.” Good.


We’ve got our Use Case 3. Let’s go off now and have a look. We are now going to have a look and we’ve now got three different use cases that we’ve created. What I am going to do now for the third use case is that I’m actually going to go into the tool and I’m going to verify with my users. 


I am going to sit down with them and I am just going to say, “Right, let’s just have a look. Customer has entered information, yup. Currency check, yup. Low credit rating, payment overdue, no, no. Log request to proceed, that’s agreed. Okay, that’s good, I’m happy with that.” And that is a good way of sitting with the user and verifying that you have got the requirements correct by picking off various use cases.


Now we go back. What you will see now is that if we go and click into a block, it is very important here. If we look at the stored paths, what you’ll see is that particular piece of logic is used by many things. It’s used by some manual test cases, some automated test cases, some use cases where we have actually gone through and verified them with the user. So it’s not just an isolated block. It’s actually linked to many things in the flow, in your SDLC, software development lifecycle.


Now let’s look at test cases. If we look there, we’ve got eight test cases. We are just kind of looking through them. Here, we’ve got different types of optimization techniques that are possible, or nodes, which is the minimum amount. I going to visit each block once and there are three different test cases that we would need for the minimum amount of testing. 

“All Edges” which is all decisions and there is a thing called “All In-Out Edges” which is the optimal number of test cases. Here, we have eight different test cases. For “All In-Out” there are ten because there could be two ways in and two ways out which increases the number.


In this case, we have picked “All Edges” and that’s good. That’s kind of showing us the different types.” What we’ve got here is we’ve now got a metric of how much coverage we’ve got. Now you’ll see that we haven’t actually got full coverage in our test cases. 

What we’ve done here is we’ve looked at the test cases that we’ve created which now we have moved into Quality Center or to wherever. These are the two logic gates that we are missing. We need to go back now and tidy up and create some test cases to cover those two, which I left out deliberately just to show you what is going on.


If we go to our complexity cases, this is where we calculate complexity. There is 100% and we will see that the complexity is linked to 558. Now, 558 can pretty much be mapped to many and we have a little money calculator telling how much this should cost to actually develop. 


If we carry on a little bit, what I am going to do is to make a change to the requirements. This is very common. I am going to say that the rules have changed. This has come back in, it’s based on some data so I am going to put that in as a block and it’s got a true/false. 

I am going to take that low credit score, we’re going to go there so we can attach that bit of logic change now. Now we are going to drag that off, put this one off to the fraud engine, that’s fine. Otherwise, we are just going to carry on so that’s fine.


So there is an extremely common sign of activity. We have actually changed our requirements but here we are just changing the flow chart. Now if I go to my use cases, let’s just have a look at what the path explorer makes of that. What it will do is that it has discovered that one of the uses cases now have changed. So I need to repair it. I need to actually go in and change that use case. Two of them are fine. One of them has not changed. In my test cases, I’ve now got one to be changed, so I actually have changed one. 

If we go and have a quick look at my metrics, you will see that our coverage has dropped. That means that because we have added something here, we need to test that. So we go back to our complexity cases, we will just do it one more time, which is our ultimate test case. Again, here, we’ve got one.


What we need to do is to go in and “Add to Existing.” I am going to do now is pick that there is now one extra test case to test that particular extra bit of logic we put in. So we repaired one and created one new test case. We are back up to 100% but it has also shown us the difference. There’s a 16% difference in complexity between the original system. That is a very important feature of the tool, to try and show you the differences between one requirement and another. That is very accurate. It maps almost directly to one rate.


Moving on a little bit, we have decision tables. We can also embed flows in other flows as well which is very important. Once I’ve done this, what I’m also going to do now is that I’m a bit lazy. I’ve created my flow chart and what I’m going to do now is that I’m going to export that and I’m going to create a Word document out of it. From the flow chart, we are now creating the Word flow chart. It is quite funky this, watching it happen.


Basically what it does as it goes off and it will create the Word document for you without you having to do too much. It gives you a revision history as its going, as people have gone through. It will also tell you who is working on which particular path. It could be programmers, testers and so on. It’s quite useful.


If you have used requirements IDs inside blocks, it will do that for you as well and tie those. It will do your diagrams and so on. And that will run away. What it will also do is it will include the use cases, and you can sit with the users and just verify that that’s correct. You can just change the flow chart and recreate the Word document so it’s a very straightforward way of being able to build a static reminder of what you’ve done.


There is also this concept called path hints. Graphing theory really only works when you use the concept of what you call constraints. Some things lower down in the flow chart are affected by what’s happened before. So you cannot just rely on standard graphing theory. You need to use this concept of constraints. We have what we call path hints.


The other thing that we have done is that we have gone in and you saw some test data and these are our eight test cases. We can go and create pack test data that is going to test this particular requirements document. And that is one of the core functionalities of the tool.


That was a pretty short demo. I would encourage people to download the tool and we’ve got a ton of videos online to actually have a look at it. Hopefully that gave you an idea of what the tool can do and what it looks like in real life. But let’s look at this idea of continuous development or continuous integration.


We’ve got project managers, test managers, programmers and testers. We’ve got user requirements, the BA working with the user, change requests. We’ve got Agile Designer where we are hopefully inputting that hopefully by the BA or the tester as a secondary port of call. Out of that we will get our use cases or our user stories, our requirements documents, which could be Word or we could push them directly into tools like Quality Center. 


We’ve got complexity analysis which, again, is very accurate. We’ve got our test cases, and this is the smallest number of test cases to test pretty close to 100% functionality. There’s test data, virtual data if you are using a virtualization engine such as Lisa, or Parasoft, or HP Service Virtualization. Also the automation scripts. All of those can also be produced by Agile Designer as an output of the process. And obviously there are the expected results as well. Those can now be fed into Quality Center to find out “Yes, it worked,” or “no, it didn’t work.” 


Then finally, the other thing we can do is that if you’re in an Agile world, I would say that most of our customers aren’t Agile. They just use it as an accelerator to Waterfall. But if you are moving towards Agile then you can populate your VersionOne or your Rally directly from the tool and it would just put them in the backlog for you. 


So all of that is going to give you your test cases, your virtual base for any automation. It’s going to create the right data for you, synthesize it, allocate it, find it, whatever it takes using one of our tools called DataMaker. It will also then build you the test case and the test data and the automation scripts for products like Selenium, artificial robot, whatever it takes. It will also populate the storyboards into products like VersionOne.


As I said before, one product, lots of outputs. You might want to start with test cases but you very quickly – I think the main customer that we talked about in the beginning called it a one-stop shop. They kind of like going to it because it does many things all in one go.


Out of all of that, you then have your developers and testers. They’ve got lots and lots of assets and they can begin working. As change procedure, you’re just refreshing that data left to right. In terms of requirements you’ve got traceability back to your use cases, you’ve got traceability across your test cases. And then as defects come through you’ve then got traceability through to that.


Okay, so that’s really the global picture of how this fits into your software development lifecycle. Continuous development is from someone having a idea on the far left to actually getting it into the production environments.


To summarize, what can Agile Designer do for me? Clear and ambiguous visual requirements; it can reduce defect creation by as much as 95%. That is what we have been finding so far. It is based very much on some of the work that we’ve been doing with writing testable requirements and some of those ambiguity reviews that I showed you before.


It can quickly and simply introduce agile processes into your existing Waterfall lifecycle. If you can create the test cases and test data at the same time as the requirements, you’re actually agile with a small “A.” You’re actually cracking on. You aren’t waiting until the end of the “B” model to be able to test at the end.


It can accurately estimate the cost of new software and the changes, which is crucial. If someone says, “We are going to make a small change,” and you discover it is actually going to double the number of test cases then you are actually looking at about 100% change and you should consider that when planning.


It is very good for enforcing a fixed-price SLA. This is good for the outsourcer and the person outsourcing. It’s very clear in terms of what and how much this is going to cost using that complexity. We do have a one-hour webinar just on complexity theory if you’re interested in that. I will give you my email address at the end. If you do want some additional material, feel free to get in touch with me.


De-duplicating existing test cases to reduce the cost and length of test cycles. Typically, for a very large project, about 30% reduction in testing is what we normally get once we bring them into the tool, optimize them and put them back out again. 


You’ve got loads of good stuff already. You’ve got lots of BPMNs, Visio diagrams, you’ve got Word documents containing text. What we can do is import those so we’re not asking you to reinvent anything really. We’ll just try and reuse the assets you’ve got. 


This has just been introduced, it’s about three weeks old. This is this idea of being able to create automation scripts for all of the major Automation Engines. That is massive. If you can literally change a requirement and ten minutes later you’ve got a whole bunch of automation scripts, you are moving really well into the continuous development framework.


You can link to Agile Data, which is basically our data maker product. These allow you to find or make the correct test data in a very structured way, integrated directly into the tool. If you think of most logic, it’s actually to do with data not really inputted into the screen. The customer exists or it didn’t exist. The trade was vested or not vested. To do that, you need to find or make the right data.


Finally, the whole idea is to try and drive continuous integration and development frameworks. There is a lot of work going into this at the moment, however they do tend to all fall down with relatively poor requirements, poor testing, lack of test data. Once they got through all that lot, they are actually pretty good. They will get the stuff in and they will get it into production from that point forward relatively quickly.


So that’s my presentation. I talked for about 40 minutes. I think that has probably covered a whistle-stop tour of it. 

Usually there are a few questions when you do these things. If you do want to see a bit more, just look for Agile Designer or go to the Agile Designer website. Just have a look at the resources. If there is anything particular that you are interested in. 


Or, alternatively, email me. I’ve got a ton of information that I can send. Or just download a trial and have a bit of fun. It’s quite addictive. I’ve got to say that once you have created a requirement or a test case in Agile Designer, the thought of going back and doing it by hand is not a good thought.


Okay, that is me finished. Were there any questions that came through?

Mimi:
Yes, there are. I’ll start off with the first one. What software do you support for importing different work items?

Huw:
What software? Basically, we can import from Excel, we can connect directly to Quality Center and we can import from Word or from rich text, primarily. We also have importers for Visio as well. Those are the main importers that we can bring the stuff into the tool with.

Mimi:
The next question is, “We have a BA who normally works with ERP systems. How large should you allow a flow chart to get without overwhelming everyone?” That’s the first one. “How do you organize larger products with numerous interfaces?”

Huw:
Oh, brilliant questions. Absolutely. If ERP is black box testing, that black box testing is actually a little bit easier than white box testing. Again, if you look at some of our videos we can talk about that. And you are totally right about overwhelming. 


The idea is that if you look at most requirements documents, they are kind of a level one, level two and level three. What you should do is you should break down smaller components using the Einstein theory, into just the simple block or a decision table. Then you can embed that inside a larger process.


So you are kind of assembling smaller pieces of work. You might have something like “check credit rating.” The credit rating is good or bad. That’s the output. Inside that block, there is a ton of stuff going on, but for the purposes of what you’re up to, that is the bit that you are really interested in. That would answer the first question. What was the second question? Sorry.

Mimi:
The second question was, “How do you organize larger projects with numerous interfaces?”

Huw:
Okay, numerous interfaces. Interfaces, again, is quite an interesting thing. We just talk about the interface itself. When it comes to interface testing, object-oriented was the great white hope many years ago, so if you can test an interface to death – and the problem with an interface test is they are actually very poor. If you look at something like a typical SOA test or a SOA QI test, they don’t really test it will enough. 


If you come up with a series of tests to test that interface very thoroughly, that means that people who are relying on it are relying on something that is extremely well tested. Again, what you need to do with that interface is, for the purposes of your testing which may well be just a component test or maybe some integration testing, you just break it down to its core components. Posted account, account number allocated, trade processed. That is one of those outputs. And that is all you really care about in your world.


Inside that little block, again, there might be an awful lot of stuff going on, so it’s a matter of being very structured and very organized about the way that you define these levels. But it’s coming back to this idea of end-to-end testing which is a big problem for people. If I make a small change in a function down low, I need to be able to predict what is going to happen up and above it through those processes if that makes sense. Hopefully it does.
Mimi:
We have another two-part question.

Huw:
Sure.

Mimi:
Does the system support multiple users making concurrent updates? If so, how and where is the actual data stored?

Huw:
It doesn’t. We’ve got the concept of check-in, check-out. So you are going to work on it. People can view it and use it. The core components of the tool which we call “visual flows” are stored centrally in a repository. There is a service layer to be able to get at those. The best way to do it is this idea of having the concept of components and people would work on components inside components. 


But at the moment, it’s a bit like Visio. Some of the optimization we are doing requires a proper really hardcore machine to be able to do some of these optimization techniques. So we haven’t put it on the web as a web tool. We are talking about that as one of futures. We have a list a mile long of some of the requests from our users at the moment.


But at the moment, it’s a check-in / check-out process. You take it, you do some work and then you check it back out. You check back in for the team to work with.
Mimi:
Moving along, can you explain a little bit more about how to calculate that complexity number?

Huw:
Okay, complexity. HP and IBM used to be awesome at complexity. 30 years ago - if you go and look at the books out there on complexity, there was a ton of good stuff on it. In our view of the world, and we’ve got some pretty good mathematicians here, we think complexity is based on testability. 


So you might have a system that has 2000 lines of code and five test cases. You might have some that have 100 lines of code and has 103 test cases. Now as long as you can calculate the minimum number of test cases, then you can use the concept of testability to calculate complexity. And that is really important.


In other words, it’s the minimum number of tests to be able to test each functional logic gate. It really does map very well to cost. It’s the time it takes to test the system, not to develop it, which is the more important thing you should think about when you are calculating complexity. 


And if you make a change, which - the government or public service systems quite often say, “Oh, we are just going to add in their child benefit. Oh, easy.” That may well increase the amount of tests by three, factors of three or four. So that means that it is actually a 300% change to original requirement. And that is very important when it comes to calculating change, which is why these changes run on and on and on and projects overrun. Hopefully that answers that.

Mimi:
Okay. Next question, “Can I export my use cases into Quality Center?”

Huw:
Yes. We picked Quality Center as our main one because most of the major companies have that. And it’s a direct interface. You literally just export them and bang them out as use cases and they will go straight out. We also have some generalized exporters and those pretty much just go into spreadsheets, like a generalized spreadsheet that you can get into things like rationale, etcetera.

Mimi:
Okay. Then we have, “Can it import into Visio?”

Huw:
We can import Visio, but we can’t export to Visio. We will normally take a static diagram and push it out but we can’t do the reverse at the moment.

Mimi:
Okay, we have one more question right now. “How does it create the test data?”
Huw:
Basically what we do is we have the concept associated with a logical gate. You might have “account in credit” or “account in debit.” That is quite a complex piece of information. You have something and we need to interpret that. What we’ll do is that we will create some SQL which goes off and interprets that.


What we need to do is attach that “account credit or debit” to a logic gate. That means that if we turn left or right in our use case or our test case, we will actually just create or find that data for you. We create an interface layer which then maps to the logical concepts that users, testers and developers and analysts can understand. So we are sort of bringing complex concepts into a simple, abstract term. That is a big subject actually. We could do a whole webinar just on that. If anyone is interested, let me know.

Mimi:
And another question has just slid in. Is it possible to get an extended trial time limit from the standard 15-days on your website?

Huw:
Sure. If you send me an email. I am always interested to see what you are up to, so just send me a personal email, it’s fine. To be honest, when I have spoken at the IIBA before, I have offered extended trials to IIBA members. Just get in touch or send me a LinkedIn message or whatever and we’ll sort it out for you. You may well want a multi-user version as well rather than a standalone user but absolutely, no problem.

Mimi:
This is awesome. Thank you very much for your time, Huw.

Huw:
A pleasure. Thank you very much for having us.

Mimi:
As Huw has pointed out, he has his contact details up on the page. Thank you very much for your time, everyone, and this concludes today’s presentation.

Huw:
Thank you. Bye.

Mimi:
Bye.




